Graft Failure
Graft Versus Host Disease
Graft Versus Leukemia

Angel Whaling, BSN, RN, CPN®, CPHON®
Clinical Educator
Cancer Care and Blood Disorders Clinic
Seattle Children’s Hospital
Seattle, Washington

Objectives
- Define graft failure
- Describe Graft vs. Leukemia effect
- Review pathophysiology and risk factors for Graft vs. Host Disease (GVHD)
- Describe signs and symptoms of GVHD
- Describe nursing interventions for skin, gut and liver GVHD
- Review disease prophylaxis and first line management
- Discuss therapies for the treatment of steroid refractory GVHD

“Graft” Definitions
- Engraftment: When the patient begins creating blood cells from the repopulated marrow.
- Graft Failure: When engraftment does not occur or occurs and subsequently is not sustained.
 - Primary Graft Failure
 - Secondary Graft Failure

What is Graft Vs Host Disease?

“Graft” Definitions
- Acute Graft vs Host Disease (aGVHD): An immunologic reaction to the transplanted HSCs classically occurring in the first 100 days post HSCT involving the skin, liver, and gut.

“Graft” Definitions
- Chronic Graft vs Host Disease (cGVHD): An immunologic reaction resembling an auto-immune disorder (scleroderma, Sjogren’s syndrome) potentially involving many of the organs and structures of the body without features of aGVHD.
- Graft vs Leukemia (or Tumor) Effect (GVL or GVT): The beneficial effect that aGVHD and cGVHD have on reducing relapse.
Graft vs. Leukemia Effect (GVL)

- There is an increased incidence of disease relapse in T-cell depleted, autologous and syngeneic transplants where there is less GVHD and decreased incidence of disease relapse in patients with GVHD.
- Immunologic mechanisms mediated by the donor immune cells contained in or derived from the stem cell graft assist in the eradication of malignant cells after allogeneic HSCT.

GVL and Type of Malignancy

- All malignancies were not created equally when it comes to GVL.
 - GVL has been documented in most leukemias, multiple myeloma and MDS.

Manipulating GVL: Current Methods

- Pre-emptive;
 - Goals for GVL designed into GVHD prophylaxis.
- Discontinuation of immunosuppressive therapy if relapse post-HSCT occurs.
- Donor Lymphocyte Infusions (post-HSCT).
- Interleukin-2 administration (post-HSCT).
- Non-myeloablative HSCT.

Questions about GVL?

Significance of GVHD

- GVHD is one of the most frequent complications after HSCT.
- Incidence 30-70% in matched transplants.
- Major cause of morbidity and mortality after HSCT.
- Mortality (direct or indirect) can reach 50%.

Acute Graft Versus Host Disease
Immunology Review

Hematopoiesis

Adaptive

- Lymphocytes

Innate

- Granulocytes
 - Eosinophil
 - Neutrophil
 - Basophil
- Monocyte and Macrophage
- Platelet
- Erythrocyte

T Cells “Generals and Assassins”

- Type of Lymphocyte
- T-Cells are produced in marrow and mature in the Thymus (T)
- Many sub-types
 - Helper T Cells “Generals”
 - Cytotoxic T Cells “Assassins”
 - Memory
 - Regulatory
 - Natural Killer

Antigen Presenting Cells (APCs)

- Cells that internalize pathogens (phagocitosis) and display a small piece of protein from that pathogen on its surface
- T Cells have receptors that receive this protein and the ability to recognize or not
- Examples of APCs are:
 - Macrophages
 - Neutrophils
 - B Cells

T Cells “Generals and Assassins”

- Helper T Cells (CD4)
 - Mature B cells
 - Stimulate cytotoxic T cells
 - Stimulate macrophages
- Cytotoxic T Cells (CD8)
 - Destroy virally infected and tumor cells
 - Recognize self from not self

T Cells have receptors that receive this protein and the ability to recognize or not.
Cytokines
- Chemical/hormonal messengers that allow immune cells to communicate to each other.
- Immune cells need to:
 - Produce them
 - Release them
 - Receive messages (receptors)
 - React to them
- Examples of Cytokines:
 - Interferon
 - Interleukin
 - Tumor necrosis factor

Pathophysiology
- **Three Step Process**
 1. Tissue damage
 2. Donor T-cell activation and cytokine secretion
 3. Cellular and inflammatory effectors

Step 1: Tissue Damage
- Prior to transplant, patient’s tissues are damaged by:
 - Underlying disease and its treatment
 - Infection
 - Drugs and radiation used in conditioning regimen

Effects of Conditioning
- Chemotherapy and radiation therapy leads to tissue damage
- This damages causes:
 - Activation of host antigen presenting cells (APCs)
 - Cells that display a foreign antigen with HLA on its surface (recognized by T cells)
 - Lipopolysaccharides (LPS) to leak through the intestinal mucosa into the circulation
 - LPS stimulates the release of the inflammatory cytokines, tumor necrosis factor (TNFα), IL-1, and others
Step 2: Donor T-cell Activation and Cytokine Secretion

- Inflammatory cytokines and LPS help to activate donor T-cells
- Activated T-cells proliferate and secrete cytokines, including IL-2 and Interferon
- Secretion of cytokines activates phagocytes

Step 3: Cellular and Inflammatory Effectors

- Activated phagocytes, along with T cells, secrete inflammatory cytokines that cause target cell death (apoptosis) and tissue damage
- Damage to the GI tract, caused principally by inflammatory cytokines, amplifies LPS release and leads to "cytokine storm" and further tissue damage

Who is at greater risk for GVHD?

Acute GVHD: Well Established Risk Factors

Increased Risk:
- HLA-mismatch
- Older recipients
- Older donors
- High-dose TBI
- Sex mismatch (esp female to male)
- Unrelated donors

Reduced Risk:
- T cell depletion
- Cord blood

GVHD Onset

- GVHD will become evident in patients soon after engraftment
 - Median onset: Day +19
- Exceptions
 - Hyperacute GVHD: "Early" GVHD that occurs Day +7 to +14 before ANC returns which includes fever, generalized erythroderma and desquamation
 - GVHD in nonmyeloablative HSCT: "Late" GVHD that can occur 6-12 months after transplant
Manifestations of Acute GVHD
- Skin
- GI Tract
- Liver

Diagnosis and Staging

Diagnosis of GVHD
- May be clinical
- Liver enzymes
- Biopsy
 - Skin
 - Endoscopy (upper or lower)
- Biopsy result may be needed for some study enrollment, even if clinical findings are clear

Acute GVHD: Clinical Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Skin</th>
<th>Liver</th>
<th>Gut (Adults)</th>
<th>Gut (Peds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% BSA Rash</td>
<td>Bilirubin</td>
<td>Stool volume in mls/day</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td><25</td>
<td>2-3</td>
<td><1000</td>
<td><10/kg</td>
</tr>
<tr>
<td>++</td>
<td>25-50</td>
<td>3-6</td>
<td>1000-1500</td>
<td>10-20/kg</td>
</tr>
<tr>
<td>+++</td>
<td>50-100</td>
<td>6-15</td>
<td>>1500</td>
<td>20-30/kg</td>
</tr>
<tr>
<td>++++</td>
<td>Bullae</td>
<td>>15</td>
<td>Severe pain</td>
<td>>30/kg</td>
</tr>
</tbody>
</table>

Clinical Grading of aGVHD
Glucksberg Criteria

<table>
<thead>
<tr>
<th>Overall Grade</th>
<th>Skin</th>
<th>Stage GI</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (mild)</td>
<td>I to II</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 (moderate)</td>
<td>I to III</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>3 (severe)</td>
<td>II to III</td>
<td>II to III</td>
<td>II to IV</td>
</tr>
<tr>
<td>4 (life threatening)</td>
<td>II to IV</td>
<td>II to IV</td>
<td>II to IV</td>
</tr>
</tbody>
</table>

The Grade of AGVHD influences response to therapy and survival

<table>
<thead>
<tr>
<th>Grade</th>
<th>Response rate (%)</th>
<th>Survival at D100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>NA</td>
<td>78-90</td>
</tr>
<tr>
<td>II</td>
<td>63-95</td>
<td>66-92</td>
</tr>
<tr>
<td>III</td>
<td>17-39</td>
<td>29-62</td>
</tr>
<tr>
<td>IV</td>
<td>0-6</td>
<td>23-25</td>
</tr>
</tbody>
</table>
GVHD Signs and Symptoms: Skin
- Organ most commonly affected by GVHD
- Initial presentation often involves the skin and may seem like a flush of the face, ears, palms, soles, and upper trunk
- Maculopapular rash may become generalized
- When severe, rash may progress to bulla formation and widespread desquamation

Nursing Interventions
- Assess skin frequently
 - Especially groin, axilla, skin folds
- Skin should be kept clean
 - Daily baths/shower with gentle cleansers
- Infection prophylaxis
- Use non-perfumed, heavy emollients frequently
- Avoid tape and other irritants

How to we care for patients with skin GVHD?

Nursing Interventions
- Pain control
- Treat as burn in severe cases
- Refer to Standard Practice or institutional guidelines of care
- Patient and family education

GI Tract
- GI manifestations highly variable and non-specific
- Diarrhea is most common symptom
- Anorexia, nausea, food intolerance, cramping, abdominal pain, bloody stools, mucosal sloughing, and ileus may also be present
How do we care for patients with GI GVHD?

Nursing Intervention
- Monitor intake, nausea and anti-emetic use/patterns
- Monitor, describe and test all emesis and stool
- R/O pathogens
- Strict I/Os
- Weight monitoring
- Stool replacement as needed

Nursing Intervention
- Peri-rectal care
- Gut rest for severe cases
- Alternate diets
 - Low fat, low fiber, low lactose
- TPN/Fluid and electrolyte management
- Patient and family education

Liver
- Jaundice and/or an increase in alkaline phosphatase and bilirubin are early signs of GVHD
- Obstructive hyperbilirubinemia is the primary hepatic manifestation
- Measurement of severity of liver involvement is based on total bilirubin level
- Liver biopsy helpful in discerning underlying etiology

Nursing Interventions
- Strict I/Os
- Management of symptoms
 - Pruritis and skin care
 - Nausea and vomiting
- Monitor for confusion/lethargy
- Fall precautions
 - Maintain safe environment
- Patient/family education

Autologous “Pseudo” Graft vs. Host Disease
- Stem cells collected from patient after mobilization may develop capacity to produce self-reactivity after autologous HSCT when the patient lacks immune regulation due to conditioning.
- Manifestations:
 - Maculopapular skin rash (can be histologically identical to aGVHD)
 - Nausea, vomiting and diarrhea
- Incidence: <8%
- Onset: Day +7 to +21
- Treatment: Steroids
Prevention of Acute GVHD

WHAT CAN WE DO BEFORE TRANSPLANT TO PREVENT GVHD?

Prophylaxis: Pre-Transplant

- Conditioning Regimen
 - Reduced Intensity Regimens
- T-cell Depletion

Reduced Intensity Regimens

- Reduced intensity conditioning regimens result in less severe GVHD, as a result of diminished cellular injury from reduced endotoxin exposure due to less mucosal injury
- Delayed onset of GVHD seen with reduced intensity conditioning regimens

Acute GVHD is delayed and is less frequent after Non-Ablative compared to Ablative transplants

T-Cell Depletion

- The number of T cells in donor stem cells is directly associated with severity of aGVHD
- T-cell depletion is one of the most effective forms of GVHD prophylaxis
- However, overall survival rates equivalent
What are the Pros and Cons of taking T-Cells out?

Advantages and Disadvantages of T-Cell Depletion

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low incidence of acute and chronic GVHD</td>
<td>Higher incidence of graft failure</td>
</tr>
<tr>
<td>Reduced or no requirement for post-transplantation immune suppression</td>
<td>Loss of GVL activity (higher incidence of disease relapse)</td>
</tr>
<tr>
<td>Decreased pulmonary and hepatic toxicity early after HSCT</td>
<td>Delayed immune reconstitution</td>
</tr>
<tr>
<td>Decreased early transplant-related mortality</td>
<td>Increased risk for post-transplantation EBv-LPDs</td>
</tr>
<tr>
<td>Reduced or no requirement for post-transplantation immune suppression</td>
<td>Higher incidence of CMV reactivation</td>
</tr>
<tr>
<td>Decreased pulmonary and hepatic toxicity early after HSCT</td>
<td>Overall survival not improved compared to non-TCD HSCT</td>
</tr>
</tbody>
</table>

Drugs Commonly Used in GVHD Prophylaxis

- **Calcineurin Inhibitors**
 - **Cyclosporine or Tacrolimus**
 - Calcineurin inhibitors; decrease production of IL-2 and affect the receptor for IL-2 on T cells; result is decreased ability of resting T cells to be stimulated to become active

Prophylaxis - Gold Standard

- **Tacrolimus** increasingly being used in place of CSP
 - Continuous infusions preferred over bolus dosing for decrease in toxicities and constancy in serum levels
 - Usually starts 24-36 hours pre-transplant
Calcineurin Inhibitors

- **Dose**
 - Adjust according to blood levels
 - Taper varies depending on protocol
 - CSP; Oral Neoral® dose = 2.5X the IV dose
 - Tac; Oral Prograf® dose = 4X the IV dose
 - Usually given as 23.5hr continuous infusion
 - May be given Q12 IV/PO

Calcineurin Inhibitors; Considerations

- Do not give with beverages containing bergamottin (grapefruit juice, Sunny Delight, Fresca and Squirt)
- If patient vomits within one hour of oral dose, repeat dose
- Patients should receive 3 bolus doses or 24 hours of continuous infusion before receiving stem cells
- Serum levels drawn from opposite lumen
 - Based on target level range
 - Steady levels not achieved for 48-72 hours after dose adjustment

Calcineurin Inhibitors; Side Effects

- Hypertension
- Tremor
- Headache
- Hirsutism (CSP)
- N/V
- Diarrhea
- Infection
- Hyperlipidemia
- Hyperkalemia
- Hypomagnesemia
- Elevated BUN/Cr
- Infusion related effects: flushing, erythema, hand & foot paresthesias (CSP)
- Hemolysis
- Abdominal discomfort
- Hyperbilirubinemia
- Elevated transaminases
- Hyperglycemia
- Acne
- Delirium

What are some side effects from Cyclosporine and Tacrolimus?

- Anorexia
- Rash
- Diarrhea
- N/V
- Increased mucositis
- Myelosuppression
- Increased LFTs

Prophylaxis - Gold Standard

- **Methotrexate**
 - Usually given day +1, 3, 6, 11
 - Allogeneic fully myeloablative transplants
 - Folate inhibitor that blocks production of reduced folates which are necessary for DNA synthesis; this effect is not specific to T cells

Methotrexate

- Side Effects
 - Anorexia
 - Rash
 - Diarrhea
 - N/V
 - Increased mucositis
 - Myelosuppression
 - Increased LFTs
- NOTE; dose is ordered on day of administration and may be held if SOS or third spacing present
Mycophenolate Mofetil (MMF)

- Minis and cords
- Decreases lymphocyte proliferation
- Given Q8 or Q12 IV/PO
 - IV dose equal to PO dose
- Side Effects
 - Constipation
 - Diarrhea
 - N/V
 - Confusion
 - Tremor
 - Gastrointestinal bleeding
 - Hypertension
 - Peripherial edema
 - Cough
 - Myelosuppression
 - Infection

Immunosuppressive Medications used to Prevent GVHD Based on Transplant Type
(Seattle Cancer Care Alliance)

<table>
<thead>
<tr>
<th>GVHD Prophylaxis</th>
<th>Allogeneic Transplants</th>
<th>Cord Blood Transplants</th>
<th>Non-myeloablative Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacrolimus & Methotrexate</td>
<td>Cyclosprine & Mycophenolate</td>
<td>Tacrolimus or Cyclosprine & Mycophenolate</td>
<td></td>
</tr>
</tbody>
</table>

Alternate Prophylaxis – Post HSCT

- **Ursodial** (Ursodeoxycholic acid)
 - A bile acid that comprises, in part of bear bile
 - Stabilizes hepatocyte cell membranes
 - Reduces the release and expression of inflammatory cytokines
 - Used for Sinusoidal Obstructive Syndrome (SOS) prophylaxis
 - also affecting liver, skin and gut GVHD!

Alternate Prophylaxis – Post HSCT

- **Cytoxan**
 - 2 doses given between day +2/4
 - Studies show decrease in GVHD and mucusitis
 - Protocol 2270 now open!

Treatment of GVHD

How to we usually TREAT GVHD?
1st Line Treatment - Corticosteroids

- Steroids, steroids, steroids!
 - May be given
 - Orally (Prednisone)
 - Intravenously (Methylprednisolone)
 - Topically (Beclomethasone)
 - Many effects...
 - Decrease proliferation of T cells by decreasing production of IL-1 and IL-2
 - Can be highly effective
 - Goal is to control acute manifestations and then to taper as soon as possible

Corticosteroids

- Problems with short and long term side effects and dependency
- Prolonged use of high-dose glucocorticoids for aGVHD is associated with increased risk for:
 - Infection
 - Relapse
 - Death

Treatment - Steroids

- Systemic steroids
 - Usually started at 1-2mg/kg/day
 - Tapers vary by
 - Response to treatment
 - Dose given
 - Length of time on steroids
 - SCCA Standard Tapers

Steroid Side Effects

- Euphoria
- Depression
- Abdominal discomfort
- Hypertension
- Sodium and fluid retention
- Impaired skin healing
- Infection
- Osteoporosis
- Avascular necrosis
- Skin atrophy
- Cataracts
- Glaucoma
- Muscle weakness
- Hyperglycemia
- Cushing’s syndrome
- Attention deficit
- Insomnia

Topical Steroids

- Taken orally to "coat" the gut, and decrease inflammatory response locally
- “B&B”
 - Beclomethasone Dipropionate (orBec®)
 - Immediate release used for upper GI tract GVHD
 - Budesonide
 - Extended release form of Beclomethasone used for lower GI tract GVHD
 - Little absorption systemically
 - Given in combination with systemic steroids
 - Can enable more rapid weaning
 - Studies open, using B&B as GVHD prophylaxis

orBec stops at D50
Prednisone taper
Prednisone taper with OrBec

Standard prednisone taper
SCCA Treatment; Mild vs More than Mild

<table>
<thead>
<tr>
<th>Overall Grade</th>
<th>Skin</th>
<th>Stage Gi</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (mild)</td>
<td>I to II</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>2 (moderate)</td>
<td>I to III</td>
<td>I I</td>
<td></td>
</tr>
<tr>
<td>3 (severe)</td>
<td>II to III</td>
<td>II to IV</td>
<td></td>
</tr>
<tr>
<td>4 (life threatening)</td>
<td>II to IV</td>
<td>II to IV</td>
<td></td>
</tr>
</tbody>
</table>

Steroid-Refractory GVHD

Definition:
- Experience return of symptoms when weaning attempted
- Have progressive or unstable disease on maximum steroid therapy
- 82% of patients with severe (grade III-IV) aGVHD will be steroid refractory
- Steroid refractory GVHD is associated with 20% survival past day 200

What happens next?
- No standard therapy/algorithm
- Depends on:
 - Body system involved
 - Patient’s health
 - Studies available
 - Physician and institutional preference

Options
- Alternate immuno-suppressive medications
 - MMF
 - Rapamycin
 - Pentostatin
 - Topical steroids
 - ATG
- Monoclonal antibodies
 - For example;
 - Visilizumab
 - Dacluzimab
 - Alemtuzumab
 - Infliximab
- Ultraviolet light therapy
 - Extra-corporeal photopheresis (ECP)
 - Psoralen Ultra Violet A therapy (PUVA)
- Future Directions
 - Mesenchymal Stem Cells
 - Fusion Proteins

Alternate Immuno-Suppressive Medications

- **Sirolimus** (Rapamycin)
 - Blocks ability of IL-2 to stimulate progression of a T cell through it’s cell cycle, reducing T cell proliferation
 - Usually given for cGVHD
 - Do not give within 4 hours of CSP
Monoclonal Antibodies (MABs)

- Development of very specific antibodies through hybridoma technology
- Several MABs in use/being studied for GVHD

Monoclonal Antibodies (MABs)

- MAB action in GVHD therapy
 - Targets and "tags" a specific antigen which will then be destroyed
 - May be a certain type of T cell or cytokine
 - Blocks receptors (usually IL-2) on the surface of T cells, therefore blocking their ability to be activated

Monoclonal Antibodies (MABs)

- Example
 - Alemtuxumab (Campath®)
 - Targets CD52
 - Expressed on many cells involved in GVHD
 - Mature T and B lymphocytes
 - Natural killer cells
 - Most monocytes
 - Macrophages
 - Some dendritic cells
 - Linked to increased risk of opportunistic infections
 - Especially Cytomegalovirus (CMV)

Ultra-Violet Light Therapy

- 8-Methoxypsoralen (Psoralen®) is a plant-derived photo-sensitizer given prior to UV light exposure
- Exposure to Psoralen and long wavelength ultra violet light causes
 - DNA strand breaks, leading to poor repair and cell death
 - Depletion of cell surface markers
Ultra-Violet Light Therapy - PUVA

- Psoralen and ultraviolet light (PUVA) has been used in the treatment of many skin disorders such as Psoriasis, and more recently acute and chronic skin GVHD

- Treatment usually lasts 10 seconds - 10 minutes, given 2-3 times/wk

Ultra-Violet Light Therapy – ECP

- Extra-corporeal photopheresis (ECP) is a process of
 - Collecting T cells by apheresis
 - Adding Psoralen to cells
 - Exposing T cells to UVA
 - Returning cells to the patient

- Usually given on 2 consecutive days every week or other week
- Takes time to work; treatment can last weeks to months
- Effective salvage therapy for steroid resistant GVHD:
 - Most effective on skin
 - Greatest benefit may be steroid-sparing effect

Future Directions …

Fusion Proteins

- Proteins created by fusing genes
- Ontak® (Denileukin Diftitox)
 - Fusion protein combining IL-2 and Diptheria toxin
 - Binds to cells with IL-2 receptors and introduces the diptheria toxin into the cell, killing it
 - Ontak works best on cells with "high affinity" IL-2 receptors; Some leukemia and lymphoma cells and cytotoxic T cells
 - This not only kills the cell, but stops the growth, differentiation and survival of activated T cells

Mesenchymal Stem Cells

- Mesenchymal stem cells (MSCs) are undifferentiated, pluripotent cells that give rise to mesodermal tissue, including
 - Bone
 - Cartilage
 - Muscle
 - Tendon
 - Fat

- MSCs constitute the supportive stroma within the bone marrow that provides the microenvironment for HSCs

Properties of Mesenchymal Stem Cells

- The immune-regulatory properties of MSCs may be useful in preventing and treating GVHD
 - Modify the response of inflammatory immune cells
 - Assist with tissue repair, especially in the gut and liver
 - Suppress lymphocyte proliferation and inflammation
Properties of Mesenchymal Stem Cells

- MSCs might enhance engraftment
 - After conditioning, marrow stroma is damaged and slow to reconstitute
 - MSC infusion in animals have been shown to help reconstitution of stroma and enhance engraftment
 - MSCs produce important cytokines that promote expansion and differentiation of HSCs

Current Studies Open at SCCA for aGVHD

- UVADEX® and ECP for the Treatment of Pediatric Patients With Steroid Refractory Acute Graft Versus Host Disease
 - Single-Arm Study to Assess the Efficacy of UVADEX® (methoxsalen) Sterile Solution in Conjunction with THERAKOS® CELLEX® Photopheresis Systems in Pediatric Patients With Steroid-Refractory Acute Graft Versus Host Disease (aGVHD)

- A Study of Ruxolitinib in Combination With Corticosteroids for the Treatment of Steroid-Refractory Acute Graft-Versus-Host Disease (REACH1)
 - A Single-Cohort, Phase 3 Study of Ruxolitinib in Combination With Corticosteroids for the Treatment of Steroid-Refractory Acute Graft-Versus-Host Disease
 - Age 12+

- Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD
 - A Phase II Study Evaluating Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors for Prevention of GVHD
 - Age 14+

Conclusions

- Severe and steroid-refractory GVHD is a major, life threatening complication of HSCT

- Advances in HLA typing, reduced intensity conditioning regimens, and T cell selection have the potential to decrease the incidence and severity of GVHD

- Continued development of targeted and alternative therapies will improve treatment of GVHD and steroid-refractory GVHD, morbidity, and mortality

Thank You!