Sarcoma Immunotherapy: The Future Is Near!

Seth M. Pollack, MD
Assistant Member
Outline

1. Introduction
2. Immune Response to Sarcoma Subtypes
3. Targeting NY-ESO-1
4. Looking into tumors
Outline

1. Introduction
2. Immune Response to Sarcoma Subtypes
3. Targeting NY-ESO-1
4. Looking into tumors
Sarcoma is a heterogeneous group of diseases

Sarcoma (1% of all cancer - percentages include children and adults)

<table>
<thead>
<tr>
<th>Bone Sarcomas (10%):</th>
<th>Soft Tissue Sarcoma (STS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Osteosarcoma</td>
<td>GIST (18%)</td>
</tr>
<tr>
<td>• Ewings Sarcoma</td>
<td>RMS</td>
</tr>
<tr>
<td>• Chondrosarcoma</td>
<td>Other “special” STS:</td>
</tr>
<tr>
<td>• Giant Cell Tumor</td>
<td>Kaposi’s DFSP etc.</td>
</tr>
<tr>
<td>• Other</td>
<td></td>
</tr>
</tbody>
</table>

Non-GIST
Non-RMS
Not special STS:

Or, in other words, what I usually call: STS

Ducimetriere et al 2011
Is STS really that rare?

Rare cancers are more than 25% of all adult cancers.

Approximately 12,000 Americans are diagnosed with STS annually (non-gist, per American Cancer Society).
5000 people die annually.

Rare cancers lead to important scientific breakthroughs:

- Merkel Cell Carcinoma – 1500 patients/year
- ALL – 6590 patients/year
- Hodgkins Lymphoma – 8,500 patients/year
- Allogeneic transplant - 8000 patients/year
- Testicular cancer – 8720 patients/year

Greenlee et al. et al 2010
There are over 50 STS subtypes

UPS – very highly mutated subtypes
LMS – less than UPS, but also highly mutated
SS – most common translocation associated sarcoma
Liposarcoma – genetically “simple”

Undifferentiated Pleomorphic Sarcoma (UPS)
Liposarcoma
Leiomyosarcoma
Other
Synovial

Total=438
“Liposarcoma” is actually at least 3 diseases

Well-differentiated (WD)

- WD/DD
- MRCL
- Pleomorphic
- Other/NOS

De-differentiated (DD)

- 77.06 mm
- 83.98 mm
- 49.79 mm
Basic Sarcoma Vocabulary

- Localized Disease
- Locally recurrent disease
- Metastatic Disease
- Neoadjuvant Therapy
- Adjuvant Therapy
- Palliative Therapy
What are the FDA approved drugs for sarcoma?

• First line therapy: Single Agent Doxorubicin (Average 4.6 month PFS)
• Recent approval: olaratumab (may improve OS combined with dox, phase III results pending)
 • Votrient (3 month PFS, no proven OS benefit – approved for STS other than liposarcomas)
 • Eribulin (2 month OS benefit, approved for liposarcoma only)
 • Trabectedin (3 month PFS improvement liposarcoma and leiomyosarcoma)
Outline

1. Introduction
2. Immune Response to Sarcoma Subtypes
3. Targeting NY-ESO-1
4. Looking into tumors
Different Types of Immunotherapy

- Cytokine
- Checkpoint inhibitor
- T cell therapy
- Vaccine
- Other
Checkpoint Inhibitors

Checkpoint Inhibition in Melanoma

A

Nivolumab plus Ipilimumab
Median Change: Decrease of 68.1%

Ipilimumab
Median Change: Increase of 5.5%

Best Change from Baseline in Target-Lesion Volume (%)
Death or Disease Progression

- Nivolumab plus Ipilimumab: 25/37
- Ipilimumab: 30/72

Median Progression-free Survival

- Nivolumab plus Ipilimumab: 4.4 mo (95% CI 2.8–5.7)
- Ipilimumab: NR

Hazard ratio: 0.40 (95% CI 0.23–0.68)
P < 0.001

No. at Risk

<table>
<thead>
<tr>
<th>Treatment</th>
<th>72</th>
<th>54</th>
<th>45</th>
<th>38</th>
<th>20</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab plus Ipilimumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>37</td>
<td>20</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

© Fred Hutchinson Cancer Research Center
C Patient with Melanoma

TCR recognition of tumor requires MHC
Retrospective Analysis

- Two highly mutated, genetically complex STS types: UPS and LMS
- Two genetically “simple” STS types liposarcoma (WD/DD and MRCL) and SS

<table>
<thead>
<tr>
<th>Sarcoma Type</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposarcoma</td>
<td>27</td>
<td>33%</td>
</tr>
<tr>
<td>WD/DD</td>
<td>15</td>
<td>56%</td>
</tr>
<tr>
<td>Myxoid/round cell</td>
<td>12</td>
<td>44%</td>
</tr>
<tr>
<td>LMS</td>
<td>19</td>
<td>23%</td>
</tr>
<tr>
<td>Non-uterine</td>
<td>17</td>
<td>89%</td>
</tr>
<tr>
<td>Uterine</td>
<td>2</td>
<td>11%</td>
</tr>
<tr>
<td>Pleomorphic</td>
<td>20</td>
<td>25%</td>
</tr>
<tr>
<td>SS</td>
<td>15</td>
<td>19%</td>
</tr>
<tr>
<td>Monophasic</td>
<td>13</td>
<td>87%</td>
</tr>
<tr>
<td>Biphasic</td>
<td>1</td>
<td>7%</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
<td>7%</td>
</tr>
</tbody>
</table>
Focused Clustering Analysis

- Genes included if $p \leq 0.05$ difference for at least one subtype
- 367/760 genes
- Regions defined based on dendrogram clustering
- Most striking separation for genes related to antigen presentation and T cell infiltration

Pollack et al., *Cancer*. In press
Class I MHC Molecules

Pollack et al., *Cancer*. In press
Genes Related to T cell Infiltration

Pollack et al., *Cancer*. In press
TCR Vβ Sequencing

Pollack et al., *Cancer*. In press
Maybe those STS types rely more on PD-L1/L2?

Pollack et al., *Cancer*. In press
PD-1 Immunohistochemistry

4+ (above) and 5+ (below)
Staining showing infiltration with PD-1+ cells

Pollack et al., *Cancer*. In press
PD-L1 Immunohistochemistry

Very high PD-L1 Staining in a UPS tumor

Pollack et al., *Cancer*. In press
Pollack et al., *Cancer.* In press
PD-1 Inhibition in STS

Burgess/Tawbi ASBO 2016: SARC28 – 40 patients (4 of 10 UPS responses, LMS – 0/10, SS – 1/10, Lipo 1/10)

Suzanne George ASBO 2016: 12 Uterine LMS - no responses
TAM impact for STS But are Killed by Trabectedin

TAM Markers in Uterine LMS

Ganjoo et al., Am J Clin Oncol 2011

Germano et al. Cell 2013
FHCRC 9717: Avelumab (anti-PD-L1) + trabectedin

For patients with liposarcoma and leiomyosarcoma.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avelumab</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Trabectedin</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PI: Pollack
FHCRC 9624: Doxorubicin + Pembrolizumab

Cycle 1:
Pembrolizumab
200mg
single agent

Cycle 2-7:
Pembrolizumab
200mg
+ Doxorubicin

Cycle 8:
Pembrolizumab
200mg
single agent

Phase I
3+3 design:
Part 1: Doxorubicin 45 mg/m²
Part 2: Doxorubicin 75 mg/m²

Phase II
2-stage design:
Part 1: 20 patients (requires ≥ 2 responses)
Part 2: 15 patients

PI: Pollack
Outline

1. Introduction
2. Immune Response to Sarcoma Subtypes
3. Targeting NY-ESO-1
4. Looking into tumors
NY-ESO-1 is a CT Antigen Expressed by SS

Cancer Testis Antigens (CTA) are well established self-antigens

- Not expressed at the protein level in most normal tissues
- Unknown biologic function
- Epigenetically regulated
- NY-ESO-1, PRAME, MAGE family antigens included
- NY-ESO-1 frequently and homogenously expressed by SS
- Positive 20/25; homogenous 14/20

Jungbluth et al., Int J Cancer 2001
Screening Tumors for Tissue Bank for CTA Expression
MRCL Expresses NY-ESO-1 Homogenously

- 25 cases tested, all positive
- >70% of cases, homogenous.
- MRCL cell lines can be lysed by NY-ESO-1 specific effectors
- No other disease expresses NY-ESO-1 with this frequency

Pollack et al., *Cancer* 2012
Culturing NY-ESO-1 Specific Cells

SS and MRCL Leukapheresis products lack clear tet+ populations.

After 2 stimulations, three wells were identified with clear tet+ populations.

Final product contained 57×10^9 cells and was over 94% CD8+, tet+.

Pollack et al. JITC 2014
These Cells Kill Tumor Lines

Pollack et al. JITC 2014
However, because of safety issues with this trial, this regimen was abandoned.
LV305 is a novel hybrid viral vector gene delivery system (ZVex™) that expresses NY-ESO-1 RNA designed to target DCs *in vivo* and stimulate CD8 T cell responses against this cancer testis antigen.

| ZVex |
|---|---|---|
| **Envelope:** | **Genome:** |
| DC Targeting: | Safety: |
| • Sindbis virus envelope targets the Dendritic Cell receptor, CD209 (DC-SIGN) | • 3rd generation lentiviral vector backbone |
| ZVex Envelope: | • Modified to be replication incompetent and integration deficient |
| DC Targeting: | Specificity: |
| • Sindbis virus envelope targets the Dendritic Cell receptor, CD209 (DC-SIGN) | • Vpx prevents degradation within DCs |

Slide courtesy of Immune Design
Increased NY-ESO-1 Tet+ Cells in A0201+ Patients

Tetramer Staining in A2+ Patients (Percent of CD8+ Cells)

PBMC Elispot

Pollack et al. Submitted
Pre and Post Tx TCR sequencing

1.68% of Pre-tx T cells

2.51% of Post-tx T cells

Clonality 0.11

Clonality 0.18
Durable Tumor Regression Following LV305

Percent Change by RECIST From Baseline (%) vs. Days Post First Dose of LV305

RECIST PR

Pollack et al. Submitted
Durable Tumor Regression Following LV305

Pollack et al. Submitted
Survival on the LV305 Vaccine Trial

All Sarcomas
N = 24 (progressed = 18)
95% CL: 2.6, 14.4

Proportion Progression Free

All Sarcomas
N = 24 (deaths = 4)

Proportion Surviving

Pollack ASCO 2016
Outcomes on LV305 and Approved Drugs For Sarcoma

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Indication</th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV305</td>
<td>STS</td>
<td>4.6 mo</td>
<td>Not reached</td>
</tr>
<tr>
<td>Pazopanib</td>
<td>STS (not MRCL)</td>
<td>4.7 mo</td>
<td>12.5 mo</td>
</tr>
<tr>
<td>(Votrient)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trabectedin</td>
<td>MRCL after Anthracycline (all STS in EU)</td>
<td>4.2 mo</td>
<td>12.4 mo</td>
</tr>
<tr>
<td>(Yondelis)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eribulin</td>
<td>MRCL after Anthracycline</td>
<td>2.6 mo</td>
<td>13.5 mo</td>
</tr>
<tr>
<td>(Halaven)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMB +/- Atezolizumab

Combination Arm
Sequential regimen of LV305 and G305 for 3 months with atezolizumab q3w up to 2 yrs

Control Arm
Atezolizumab q3w up to 2 yrs

Screen, biopsy, safety run-in
- ≤ 80 pts with locally advanced, relapsed, or metastatic synovial sarcoma or MRCL

Randomize

Biopsy, then follow up to 2 years
-Endpoints of PFS, safety, PFR (at 6 mo), ORR, duration of response, and OS

© Fred Hutchinson Cancer Research Center
Outline

1. Introduction
2. Immune Response to Sarcoma Subtypes
3. Targeting NY-ESO-1
4. Looking into tumors
Sarcomas Can Be Quite Large and Are Relatively Accessible
Presage’s Civo Device

1. Device Loading

2. Ultrasound Measurements

3. Microinjection

4. Confirmation and Skin Marking

PI: Pollack
Slide courtesy of Presage
FHCRC 9145: Intratumor TLR4 Agonist + Radiation

TLR4 agonist, GLA

conversion of immunosuppressive (M2) TAM with high IL-10, TGFβ to immune-activating (M1) TAM with high MHC, IL-12

TAM

T cell

tumor cell

release of tumor proteins

radiation

increased antitumor T cell immunity

PI: Pollack
FHCRC 9145: Schema

• Two, 6-patient cohorts treated: 5 mcg and 10 mcg.
• All patients were required to have unresectable of metastatic disease.
• GLA was injected directly into a tumor.
• Radiation was started to the injected tumor during the first week of treatment.
• Patients received high dose (generally 50 Gy) in few fractions (generally 5 or less).
• Current cohort using 20 mcg.

Weekly GLA-SE injections through week 8.
TLR4 Agonism Can Convert M2 to M1
Acknowledgments

Pollack Lab
Bailey Donahue
Sara Cooper (former)
Graeme Black
Taylor Hain
Olga Vitruk

FHCRC
Stan Riddell
Silvia Christien
Deb Banker
Chad He
Yuzheng Zhang
Mary Redman
Kelsey Baker
CPF

Immune Design
Jan H. ter Muelen
Frank Hsu
Hailing Liu

Merck Research Labs
Terrill K. McClanahan
Jennifer Yearley
Erin Murphy
Wendy M. Blumenschein
Steven M. Townson

SCCA Sarcoma Program
Lee Cranmer
Venu Pillarisetty
Ed Kim
Chappie Conrad
Ben Hoch
Bob Ricciotti
Matt Spraker
Dave Seo

Other
Achim Jungbluth
Cassian Yee
Robin Jones

Adaptive Biotechnologies
Sharon Benzeno
Ryan Emerson
Marissa Vignali

Special Thanks:
Gilman Family Sarcoma Fund
NCI 1K23CA175167-01
SARC
Sarcoma Foundation of America