Mobilization & Pre-Transplant Conditioning Regimens
Stephanie Fellingham, RN, BSN, OCN

Mobilization
• A technique used to increase the number of circulating hematopoietic stem cells from the bone marrow into the bloodstream
• Only used for patients undergoing a peripheral blood stem cell transplant (not bone marrow transplant)

The premise of mobilization is based on the following...
• Progenitor cells begin rapid reproduction when depletion is recognized
• Depletion occurs by natural processes (aging/illness) and by artificial means (cell depletion by chemotherapy)
• Artificially causing depletion will result in an increase in progenitor cell counts
• Excess progenitor cells in the bone marrow will be forced into the peripheral blood
• Stem cells can be harvested, or collected, from the peripheral blood

Who gets “mobilized”?

The patient
• Auto PBSCT
• The patient is the donor
• May receive:
 • Growth factor ONLY (in remission or autoimmune disease)
 • Chemo AND growth factor (please present)

The donor
• Allo PBSCT
• Family member or unrelated donor
• ONLY growth factor (because the donor has no disease)
Mobilization: Growth Factor Alone

- **Standard (those who JUST need recovery after chemo):** 300-480mcg daily until after chemotherapy nadir
- **Mobilization dosing:** 10-32mcg/kg QD (or divided and administered BID) until apheresis complete
 - Basically 2-4x dose, which means more significant s/e

Side Effects
- Bone Pain (reported at 86%)
 - Spine, hips, pelvis, ribs and sternum
- Headache (reported at ~40%)
- Injection-site irritation
- Flu-like symptoms
- Extremely Rare - Splenic rupture
- Long-term sequelae are unknown but following healthy donors for more than 20 years has shown no greater health complications than healthy siblings

Mobilization: Chemotherapy & Growth Factor – Autologous only

- Many chemo regimens that are being used simply to treat disease have been used successfully as mobilization chemotherapy with the addition of G-CSF
- Some patients are more difficult to mobilize and may receive more than one “round” of mobilization chemotherapy
- High-dose cyclophosphamide is the most common agent used in mobilization and can be used alone, in combination with dexamethasone or in combination with other chemotherapy drugs
- Patient will be apheresed about 24 hours after the WBC has recovered to >1,000 or when the CD34+ counts are > 5 in the peripheral blood
- Growth Factor is discontinued after final day of apheresis

Advantages
- Additional “cell kill” for known or microscopic disease
- Additive effect for mobilization by using both chemotherapy and growth factor

Disadvantages
- Large doses of chemotherapy are used, placing patient at risk for complications from prolonged neutropenia
- Patient may experience fevers, mucositis, pain, nausea, vomiting, diarrhea, dehydration, malnutrition, and fatigue

Plerixafor

- Administered with GCSF to improve mobilization for patients that do not mobilize well.
- Most commonly used for patients who have had many previous rounds of chemo and marrow is slower to recover
- In a study of MM patients, patients receiving plerixafor had 3.5X higher CD34+ counts and 2.5X higher cell yield in apheresed product.
- Very expensive (around $12K per injection).
- Timing of apheresis collection important, it must be started 10-14 hours after the injection given.
- Side effect to GI tract more common, loose stool or diarrhea.

Pre-transplant Conditioning Regimens

- Donor scheduled in apheresis for orientation and vein check to determine appropriate access
- Check pregnancy test prior to administration of G-CSF (unsafe for pregnant women to receive G-CSF at these doses)
- Review side effects and management
- Begin injections on patient’s day -5 (after conditioning has started)
- Give injections in am (so peak effect is prior to apheresis, peak is soon after admin)
- Draw labs and monitor counts (WBCs and/or CD34+ counts)
- Assess daily for bone pain, fever, allergic reactions
- Donor will be apheresed on patient’s day –1 +/- patient’s day 0, G-CSF should be given 3-4 hours before apheresis on these days
- G-CSF is discontinued when an adequate number of stem cells have been collected (usually >5 X 10^6/kg)
- Answer any donor questions about the collection process.
What is Conditioning?
- “Preparative” regimens which condition or “prepare” the patient’s bone marrow to accept transplanted stem cells
- May involve high-dose chemotherapy with or without radiation therapy and/or radioimmunotherapy
- Typically lasts 4-10 days
- These are the days immediately preceding transplant and are “countdown” days

BMT “Roadmap”

What is Conditioning?
- Chemotherapy only
- High Dose Chemotherapy and TBI
- Chemotherapy and Radioimmunotherapy
- Lower Dose Chemotherapy and single dose TBI (non-myeloablative)

Goals of Conditioning
- Eradicate residual malignancy
- Suppress patient’s immune system to prevent graft rejection
- “Ablate” the patient’s bone marrow completely to allow space for donor stem cells (myeloablative)
- “Create space within” the patient’s bone marrow enough to allow the patient to accept the donor stem cells (non-myeloablative)

Type of Regimen Depends Upon…
- Disease (malignant or nonmalignant)
- Type of transplant (autologous or allogeneic; myeloablative or non-myeloablative)
- Medical condition of patient
- Patient/provider preference

Inpatient or outpatient?
- What is the conditioning?
- What is the supportive care necessary?
- How is the patient tolerating the conditioning?
- Is there a protocol requirement?
- Does the patient have pre-existing comorbidities?
- Pediatric patients are generally admitted if under 18
Conditioning Chemotherapy

• Major component of most conditioning regimens
• Single agent or combinations of agents with or without TBI and/or radioimmunotherapy

Conditioning Chemotherapy: Agents

• Cyclophosphamide (Cytoxan)
• Busulfan
• Etoposide (VP-16)
• Melphalan
• Fludarabine

Cyclophosphamide

Dosing

<table>
<thead>
<tr>
<th>Standard/ non-transplant dose</th>
<th>Transplant dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lymphoma: 750mg/m2</td>
<td>• Myeloablative doses 100-200 mg/kg (non-myeloablative doses 30-60 mg/kg)</td>
</tr>
<tr>
<td>• Breast: 600mg/m2</td>
<td>• Total dose divided over 2-4 days</td>
</tr>
<tr>
<td></td>
<td>• Administration</td>
</tr>
<tr>
<td></td>
<td>• IV over 1 hour (doses >5000 mg over 2 hrs)</td>
</tr>
</tbody>
</table>

Cyclophosphamide

Side Effects

• Nausea/Vomiting
 - Incidence in high dose therapy about 90%
 - Onset: 6-12 hours after one hour infusion
 - Duration: vomiting rarely lasts >24 hours, nausea may last longer

• Hemorrhagic Cystitis
 - Incidence 10-40%
 - Onset: hours to weeks post-therapy
 - Prevention:
 - Adequate hydration
 - Mesna
 - Continuous bladder irrigation

• Syndrome of Inappropriate Antidiuretic Hormone (SIADH)
 - Onset: 12-48 hours after IV infusion of cyclophosphamide

• Cardiotoxicity
 - May occur with dose ranges from 120-270 mg/kg
 - Risk increases with prior anthracycline therapy

Cyclophosphamide

Nursing Considerations

• Antiemetics: begin 30-60 min. pre & continue 24 hours post

• Preventing hemorrhagic cystitis
 - IV hydration 4 hours pre & continue 24 hours post. Usually 2X maintenance fluids
 - Bladder protection
 - Mesna (MUST BE GIVEN ON TIME 15 min before then 3,6,8hrs post)
 - Continuous bladder irrigation if ordered

• Monitor fluid status
 - BID weights, postural BP, frequent I & O, maintain adequate urine output

• Monitor urine for blood (dipstick)
• Monitor electrolytes (especially K and NA)
• Baseline EKG pre-therapy (done as part of pre-transplant workup)
Busulfan

Dosing
- **Oral**
 - Protocol specific, typically 1mg/kg/dose in adults
 - Total dose 12-16mg/kg
 - Divided over 3-4 days & given Q6 hrs
 - Administration
 - NPO 1 hr pre & 1 hr post dose
 - Sips clear fluid only
 - 2mg tablets in gelatin capsules
 - Children < 5yrs: typically IV
- **IV**
 - Protocol Specific
 - 0.8 – 1 mg/kg IV every 6 hours for total of 8-16 doses (dependent on protocol and patient’s age) or 3.2mg-4mg/kg/day for 3-4 days
 - Administration
 - Infuse over 2-3 hours

Side Effects
- Nausea/Vomiting
- Seizures
- Mucositis
- Alopecia
- Skin hyperpigmentation
- Pneumonitis
- SOS
- Late Effects: sterility, pulmonary fibrosis

Nursing Considerations
- Antiemetics 30-60 min. prior to each dose
 - If patient vomits ORAL dose:
 - Do not repeat dose unless whole tablets seen
 - Count # whole tablets & re-administer with a provider order
 - NG administration: repeat only if vomiting occurs within 5 minutes
- Seizure Prophylaxis
 - Loading dose dilantin 10-15 mg/kg given 6 hours prior to first Busulfan dose
 - Maintenance dose: start 12 hours post loading dose and continue until 24 hours after last does of Busulfan given
 - May also receive levecitiram, does not require loading dose
- Pharmacokinetics
 - Goal is to maintain steady state blood levels
 - Targeted levels: Blood levels drawn according to protocol
 - Nursing P&Ps exist to guide Busulfan targeting

Etoposide (VP-16)

Dosing
- **Standard/Non-transplant doses**
 - 3.3mg/kg
 - 100mg/m2
- **Administration**
 - Standard dilution
 - 0.4mg/ml

Transplant doses
- Protocol specific
 - 450mg to 2 gms/m2
- **Administration**
 - Conditioning doses are so high the drug is administered undiluted. Standard IV tubing will crack; use nitroglycerin tubing
 - Administer with concurrent IVF with stopcock at hub of catheter
 - Refer to institutional policy for administration

Side Effects
- Hypotension
- Skin toxicities (blisters, redness, hyperpigmentation)
- Uric acid nephropathies and hemorrhagic cystitis
- Nausea/Vomiting
- Alopecia

Nursing Considerations
- Hydration 4 hrs pre until 24 hrs post (1.5 X maintenance)
- Frequent vital signs during infusion (BP, pulse Q30 min)
- Hypotension:
 - NS bolus until BP stabilizes
 - Resume infusion at slower rate
- Hyperpigmentation onset 2-3 weeks, resolves over 2-3 months
- Allopurinol started on first day of VP-16, discontinued on transplant day -1
- Frequent voiding
- Fall precautions due to high ethanol content of undiluted drug
Melphalan

Dosing
- **Dosage**: 50-60 mg/m² IV
- **Administration**: Infuse over 15-30 minutes. May infuse over longer period of time but infusion should not exceed 1 hour from mixing time due to short stability

Side Effects
- Hypersensitivity
- Cardiovascular: Vasculitis, chest pain, hypotension
- Alopecia
- GI: Nausea, vomiting, diarrhea, SOS
- Respiratory: Pulmonary fibrosis, interstitial pneumonia

Nursing Considerations
- Hydration at 1.5 X maintenance 1-2 hours pre and 24 hours post
- Monitor for anaphylaxis
- Order from pharmacy immediately prior to infusing—limited drug stability

Fludarabine

Dosing
- **Dosage**: Protocol Specific
- **Administration**: 30 mg/m² for 3 days (total dose 90 mg/m²)

Side Effects
- Immunosuppression
- Interstitial pneumonitis
- TLS with bulky disease
- Renal insufficiency
- Rash
- Fatigue, weakness
- Chills, fever, myalgia

Nursing Considerations
- Fairly well tolerated
- Immunosuppression is major side effect
Anti-Human Thymocyte Globulin Equine (ATG) - ATGAM
- Depletes T cells
- Used as conditioning for autoimmune or aplastic anemia
- Dosage
 - Protocol specific
 - Usual conditioning dose: 30mg/kg daily X 3 days
- Administration
 - 50mg/hr, 100mg/hr, remaining over 4-10 hrs (titrating slowly)
 - In-line 0.2-1.0 micron filter

Anti-Human Thymocyte Globulin Rabbit (ATG) - Thymoglobulin
- Depletes T cells
- Used as conditioning for autoimmune or aplastic anemia
- Dosage
 - Protocol specific
 - Usual conditioning dose:
- Administration
 - First dose over 6 hours, subsequent doses over 4 hours
 - In-line 0.2 micron filter

Anti-Human Thymocyte Globulin (ATG): Side Effects
- Sensitivity reactions, anaphylaxis
- Fever, chills, headache
- Rash
- Hyperkalemia
- Abdominal pain, diarrhea
- Weakness
- Dyspnea

Anti-Human Thymocyte Globulin (ATG): Nursing Considerations
- Skin test @ 1 hr prior to first dose of ATGAM, not Thymoglobulin
 - NO EMLA/LMX
- Anaphylaxis medications at bedside
- Premed with methylprednisolone (ATGAM only)
- Transfuse platelets after ATG infusion - ATG eats platelets
Conventional Radiation vs TBI

- **Conventional Radiation**
 - 180–200/day
 - One time a day
 - For 4–8 weeks

- **Mini TBI**
 - 200 Gy one time dose
 - Adults: May be at SCCA or UWMC
 - Peds: UWMC only

- **Myeloablative TBI**
 - 150–200 Gy two times a day for 3–4 days
 - Each dose 4–6 hours apart
 - All will be at UWMC
 - Pediatric patients under the age of 6 are sedated

TBI Pretreatment Preparation

- Consult and Simulation
- Pretreatment planning
- X-ray of lungs taken
- Lead Blocks developed to shield lungs - used for 3 of 6 or 4 of 8 treatments
- Orientation to TBI and education
- Confirm orders written, signed CCO sheet in place, transportation arranged if needed

TBI Pretreatment Preparation

Patient/Family Teaching

- Purpose of TBI
- Treatment location
- Anticipated duration of treatment
- Where family members accompanying patient can wait
- Patient monitoring - no one is in the room but a camera is focused on the patient
- Anticipated side effects/management
- NO CHG baths during RT

TBI: Side Effects

- **Fatigue**
 - Almost all patients report decrease in energy level and inability to concentrate
 - Onset of fatigue typically 3rd or 4th TBI treatment day

- **Nausea/Vomiting**
 - Usually peaks 1.5–2 hours after TBI
 - Prophylactic antiemetics always given before treatments
 - PRN antiemetics for breakthrough nausea and vomiting up to 48 hours after last treatment; may be administered ATC

- **Diarrhea**
 - Onset generally within 48 hours of therapy
 - Duration - may continue for week or two after TBI - consider contribution of other conditioning agents and other causes

TBI: Side Effects (continued)

- **Xerostomia**
 - Almost all patients experience dry mouth by 3rd or 4th treatment day
 - Dental consults prior to TBI
 - Reinforce oral hygiene programs taught before treatment started

- **Alopecia**
 - Usually occurs gradually within 2 weeks

- **Mucositis**
 - Develops 5–7 days after treatment started
 - Tends to worsen over next week
 - Usually resolves 3–4 weeks after treatment

- **Skin Reactions**
 - Mild erythema of skin common in first few days following TBI
 - More common in patients receiving cyclophosphamide or thiotepa prior to TBI
 - Moist erythema may develop over elbows, heels, fingertips
 - Hyperpigmentation may occur 2–3 weeks following TBI

Patient Preparation

Prior to TBI Transport

- Remove all jewelry, metal, tight fitting garments (check pajamas for metal)
- Remove all ointments, creams, powders, deodorants, perfumes or lip balms
- Remove contacts
- Pick out music
- Void
- Pre-hydration
- Anti-emetics and/or sedatives
- Nursing Handoff
TBI: Side Effects, Late

- Gonadal Dysfunction
 - 95 - 100% of females develop early menopause and sterility
 - 90 - 95% of males have absent spermatogenesis
- Thyroid Dysfunction
- Cataracts
 - Approximately 20% of patients develop cataracts within 3 years of treatment
- Pulmonary Damage
 - Interstitial pneumonitis
 - Restrictive pulmonary disease
- Neurologic complications
 - Leukoencephalopathy
 - Chronic neurologic changes
- Secondary malignancies
- Growth impairment in children

Conclusion

- Side effects of treatment and a patient’s course through transplant will greatly depend upon their conditioning regimen
- Mobilization may change, Conditioning may change but the end goal will never change:

 Eradicate disease and increase event-free survival!

Questions?