Treatment options for glioblastoma

MARC C. CHAMBERLAIN, M.D.

Department of Interdisciplinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida

✓ Following the seminal trial conducted by the European Organisation for Research and Treatment of Cancer (EORTC) and the National Cancer Institute of Canada (NCIC), concurrent temozolomide and radiotherapy has become the new standard of care for patients with newly diagnosed glioblastoma multiforme (GBM). Investigation of emerging therapies (which are now used as salvage therapy) such as small-molecule inhibitors (for example, epidermal growth factor receptor inhibitors) and convection-enhanced delivery (CED) of targeted toxins (for example, interleukin-13/pseudomonas exotoxin) is likely to build on the EORTC/NCIC treatment platform and will, it is hoped, improve survival rates in patients with GBM. The majority of adjuvant Phase I and II trials being conducted by the brain tumor consortia are based on the EORTC/NCIC treatment platform and have added a targeted therapy in an effort to find a promising synergistic treatment. Furthermore, researchers in the consortia are continuing to explore treatments for recurrent GBM, not otherwise eligible for local therapies, such as CED. The treatments under study include novel cytotoxic chemotherapy as well as small-molecule inhibitors; these are being assessed in a variety of Phase I or II trials.

KEY WORDS • glioblastoma multiforme • adjuvant treatment • salvage treatment • cytotoxic chemotherapy • convection-enhanced delivery • small-molecule inhibitor
ment of GBM. These studies clearly demonstrated a benefit for chemotherapy (that is, TMZ) in the initial treatment of patients with GBM by showing an improvement in median (14.6 compared with 12 months) and 2-year survival (27 compared with 10%) in patients receiving or not receiving TMZ. Consequently, this treatment regimen (TMZ given concurrently with radiotherapy, followed by six monthly cycles of TMZ) has become the new standard of care for patients with newly diagnosed GBM.

Adjuvant Therapy

The EORTC/NCIC study enrolled 573 patients in a randomized multicenter Phase III trial to compare radiotherapy alone with TMZ plus radiotherapy, followed by 6 months of postradiotherapy TMZ. Chemotherapy was given concurrently with conventional external-beam radiotherapy for 42 consecutive days (single daily dose 75 mg/m²), beginning with the first day of radiation. Radiotherapy was administered for 30 to 34 treatment days as a single 180- to 200-cGy fraction per day, to yield a total dose of 59.4 to 61.2 Gy. The brain treatment volume was as defined by the EORTC and RTOG guidelines.

Two to 3 weeks after the conclusion of concurrent chemoradiotherapy, patients were reevaluated with magnetic resonance imaging of the brain. If they were clinically and radiographically stable or had improved, patients were then treated with TMZ every 4 weeks (single daily dose 200 mg/m² for 5 consecutive days) for 6 months. Subsequent clinical and laboratory evaluations were completed monthly, and neuroradiographic evaluations were performed every other month.

As a study correlative, MGMT expression was evaluated in approximately 54% of all patients (307 individuals); however, studies in only 206 (36%) patients were informative with respect to MGMT expression. The MGMT analysis (by promoter methylation status) is relevant because previous studies have indicated that MGMT is the predominant repair enzyme of alkylator-based chemotherapypeduced DNA injury and that gene silencing by MGMT (accomplished by promoter methylation) is correlated with improved response and survival rates.

Outcome was significantly improved in patients treated with TMZ (2-year survival rate 27 compared with 10%, and 2-year progression-free survival 11 compared with 2%) and additionally in patients with methylated MGMT promoter who were treated with TMZ (median survival duration 21.7 compared with 15.3 months). Notably, in patients with unmethylated MGMT promoter, no difference was seen between those treated with TMZ and those treated with radiotherapy only (median survival 12.7 compared with 11.8 months).

Recently, an analysis of a secondary endpoint of the EORTC/NCIC trial, that is, health-related quality of life, revealed no negative effect on this endpoint with the addition of TMZ to radiotherapy. These results demonstrate that the addition of TMZ during and after radiotherapy for patients with newly diagnosed GBM both significantly improves survival and has no negative effect on quality of life. The results of the EORTC/NCIC study have several profound implications. First, the treatment protocol is now considered the new standard of care despite the lack of a confirmatory study (see later discussion). Second, there is an implication that TMZ may be an effective radiosensitiz-
Treatment options for glioblastoma: state of the art

benefit adult patients with GBM when administered in the adjuvant setting.

The results of this trial recapitulate those seen in an earlier BTSG investigation in which adjuvant brachytherapy was used for newly diagnosed GBM, where again no survival benefit was seen.5,12,34,50,60 Therefore, these two randomized trials provide Level 1 evidence that additional radiotherapy beyond that administered conventionally and by external beam not only adds cost to these patients’ care, but more importantly is of no proven benefit. In addition, a recent small Phase II trial (34 patients) of conformal radiotherapy in which a radiation dose of 90 Gy was used showed no improvement in either median or 2-year survival rates.15 The site of GBM recurrence after treatment failure was similar to that in other radiotherapy trials, with 78% central, 13% in-field, and 9% marginal field failures. Novel radiosensitizing agents such as efaprroxial sodium (SRR-13) and motexafin gadolinium continue to be explored in the adjuvant treatment of GBM, but at present their use is restricted to investigational trials.44,46

In the third study, another randomized Phase III trial, maximum safe resection (the median extent of resection was ≥ 90%) followed by radiotherapy was compared with the same treatment that also included implantation of Gliadel wafers.79 In this study, 240 adults with newly diagnosed GBM were compared, and although a 2.4-month difference in survival duration favoring the Gliadel arm was seen initially (despite the fact that no survival benefit was seen at the 18-month interval), subsequent analysis that excluded a small population of anaplastic gliomas in which histological features of GBM were absent resulted in no difference in outcome (that is, similar median and 18-month survival rates). Therefore, Gliadel placement at the time of initial resection in patients with newly diagnosed GBM is currently of unproven value.

Elderly patients with GBM are a relatively understudied subgroup, despite the fact that they constitute a significant proportion of all patients with GBM (~20%). According to the Central Brain Tumor Registry in the US, 1- and 2-year survival in patients with GBM who are 65 years of age or older is 13.3 and 2.1%, respectively. Furthermore, results of the RTOG recursive partitioning analysis support the suggestion that the majority of elderly patients with GBM will be categorized as Class 6 and will have an expected median survival period of 4 months.20 Despite the paucity of studies, several strategies have been offered to treat this patient population.18 In elderly patients with otherwise apparently excellent health and performance status, the EORTC/NCIC treatment is implemented. Analysis of the EORTC/NCIC data by age strata demonstrated no difference in outcome in patients who were 50 to 59 compared with those 60 to 69 years of age.71 Alternatively, other investigators have recommended accelerated hypofractionated radiotherapy (40 Gy in 15 fractions) in patients with impaired performance status.52 Another alternative approach has been to treat elderly patients with primary chemotherapy (TMZ given on a schedule of 5 consecutive days every 4 weeks) with deferred radiotherapy.31 Several cooperative groups are designing trials to address how best to treat elderly patients with newly diagnosed GBM.

Salvage Therapy

Two different, novel strategies have evolved for treating patients with recurrent GBM. In the first, direct regional administration of protein toxins is accomplished through stereotactically implanted catheters by using CED.5,17,23,45,51,55

In the second strategy, targeted therapies with small-molecule inhibitors of cell cycle signaling that are believed to be biologically relevant to the glioma phenotype are used with or without cytotoxic chemotherapy (Appendices 1 and 2).1,4,18,21,26,29,53,54,56,60

Several intratumoral drug delivery systems have been or are in clinical trials (Appendix 3). Interstitial diffusion-based drug delivery systems such as controlled-release polymer implants (that is, Gliadel wafers) are limited by a small volume of distribution within the tumor and the brain surrounding it, and by high and heterogeneous drug concentrations that may be subtherapeutic or toxic.11,12,35 In contrast, CED can deliver drugs over a large brain volume and at relatively uniform concentrations by high-flow microinfusion that generates a positive pressure gradient, propelling the drug through the extracellular matrix. The CED procedure at present uses a targeted therapy (typically a protein ligand that binds to an overexpressed receptor specific to glioma cells; that is, IL-13 or transferrin) linked to a bacterial toxin (either pseudomonas or diphtheria toxin; Appendix 4).5,17,23,45,51,55 The rationale for CED is that it is a cytotoxic therapy that works independently of apoptotic factors, is not cell cycle-specific, functions in a hypoxic environment, functions independently of cell signaling pathways, is not subject to drug efflux mechanisms, and does not induce drug resistance.23,35

Two approaches in which CED is used have been pursued clinically. In one of them, the tumor is resected and catheters are implanted in the brain surrounding the resected tumor cavity (an approach used in the NeoPharm PRECISE trial [NeoPharm, Inc., Lake Forest, IL]). In the other, catheters are placed directly into the tumor (a method of delivery used in the TransMID trial [Xenova Biomedix Pharmaceuticals, Inc., Slough, Berkshire, United Kingdom]). However, CED is limited to 1- to 4-cm supratentorial tumors not involving the midline, and in the NeoPharm PRECISE trial, to surgically resectable tumors. Randomized Phase III trials using both methodologies are being completed, which will ultimately define the use of CED in future treatment protocols. Another local therapy that is intra- cavitory, however, is now in clinical trials and uses the novel agent chlorotoxin ligated to iodine-131 (the drug is called TM-601).39 Patients eligible for this Phase II trial are undergo repeated resection and are required to have noncerebral fluid–communicating surgical cavities in which a reservoir system is implanted. Subsequently, patients are treated via a subgaleal reservoir with direct instillation of TM-601.

The molecular biology of gliomas has provided new insights into the development of these tumors, and dysregulated cell signaling pathways have been identified that are now the focus of specific molecularly targeted therapies (Appendices 1 and 2).1,4,18,21,26,29,53,54,56,60 The epidermal growth factor receptors, which are part of a family of tyrosine kinase growth factor receptors named Her, are cell surface transmembrane proteins important in cell growth and proliferation as well as cell survival, motility, and resistance to chemotherapy and radiation therapy. In GBMs, EGFR is both overexpressed and truncated in the ectodomain, giving rise to a ligand-independent, constitutively activated form called EGFRviii.40,54 The EGFRviii strongly and persistent-
ly activates the PI3K survival antiapoptotic pathway.18,53 The constitutive PI3K signaling that is driven by EGFR\textsubscript{viii} results in what has been termed “pathway addiction.”78 By promoting chronic dependence on the PI3K pathway, interruption of the dysregulated pathway (that is, by EGFR inhibitors) results in tumor cell death.

Nevertheless, despite the fact that nearly 40\% of GBMs express EGFR\textsubscript{viii}, tyrosine kinase inhibitors (one class of EGFR inhibitors) such as gefitinib and erlotinib have had very modest therapeutic efficacy (10–15\% response rates).56,60 Limited response to EGFR inhibition in GBM appears to reflect dysregulation in downstream signaling in the PI3K pathway. Phosphatase and tensin homolog, also referred to as PTEN, is a phosphatase that inhibits PI3K signaling and that is commonly lost in GBMs.4,18,53 Without PTEN, the PI3K pathway is constitutively active and independent of EGFR signaling. Mellinghoff, et al.,54 elegantly demonstrated that response to EGFR tyrosine kinase inhibitors in GBM is dependent on coexpression of both EGFR\textsubscript{viii} and PTEN. Loss of PTEN in GBMs (seen in 50\% of cases) results in resistance to EGFR inhibitors.

Based on these data, we would suggest that there are several important aspects to targeted therapy. First, single-agent molecule inhibitors are not likely to be effective because GBM, like most epithelial cancers, has multiple interactive and dysregulated cell signaling pathways that require multipoint combinatorial targeted therapies for effective tumor cell killing. Second, GBM may be stratified into molecular subtypes, predicting response to EGFR inhibitors (EGFR\textsubscript{viii} and PTEN coexpression) or lack thereof. Third, in patients with GBMs expressing EGFR\textsubscript{viii} and with loss of PTEN, the inhibition of the PI3K pathway downstream (that is, at Akt or mammalian target of rapamycin) may promote tumor responsiveness to EGFR inhibition.81 Finally, based on the results of these studies, we suggest that molecular profiling of GBM (an evolving and increasingly complicated area of research) is likely to provide insight into rational targeted therapy. Two recent examples of combinatorial regimens in which a targeted therapy and cytotoxic chemotherapy were used for recurrent GBM are seen in Table 1, whereas more recent trials in which standard chemotherapies were used are detailed in Table 2. The evolving role of immunotherapy and, in particular, the role of dendritic cell vaccines for the treatment of GBM is discussed elsewhere in this issue.

Although it is used infrequently in the majority of neurooncology centers, resection of the recurrent GBM followed by Gliasite implantation into the surgical cavity is useful in certain highly selected patients.19 Gliasite is a balloon catheter device permitting postsurgical instillation with a liquid iodine-131 radiopharmaceutical agent, Iotrex.74 This device offers the newest method of delivery for brachytherapy. Deciding whom to treat with Gliasite is difficult, and the outcome is similar to that seen with many salvage chemotherapy protocols. Additionally, interpretation of magnetic resonance imaging studies following treatment is complicated (as is true for all local therapies) and often requires correlative metabolic imaging. A therapy similar to Gliasite (although it is noninvasive), fractionated stereotactic radiotherapy for recurrent GBM is advocated at some neurooncology centers. As an example of outcomes, a recent European report of 59 patients with recurrent GBM related a median progression-free survival of 5 months and overall survival period of 8 months.75

Two other novel approaches for treating recurrent GBM include attempts to modify MGMT expression in tumors, either by depleting it using protracted TMZ dosing (so-called metronomic therapy) or by providing an alternative MGMT substrate such as O6-benzylguanine, which inactivates MGMT.13,27,28,30,80 Prolonged TMZ dosing not only results in an increased exposure to the drug, but also will deplete MGMT by suicide inactivation, a direct consequence of the MGMT enzyme repairing a single TMZ-induced DNA methyl adduct.40 This is an unproven hypothesis at this time, but it has been embraced at a number of neurooncology centers and will probably enter trials this year. An alternative strategy uses imidazotetrazinone-methylating agents such as O6-benzylguanine.27,30,80 Unfortunately, trials using this strategy have found myelosuppression to be dose-limiting, and consequently, tolerable doses of TMZ (or BCNU) have been considerably less than those achieved without concurrent O6-benzylguanine administration. Most important, response rates and survival times have been disappointing, probably due to the need to decrease the alkylator-based chemotherapy dose.

In the following section we briefly summarize ongoing clinical trials for patients with GBM in four of the major US brain tumor consortia. This list is not reflective of all trials available for GBM because there are numerous single-institution trials for patients with both initially diagnosed and recurrent GBM.

Brain Tumor Consortia Trials

New Approaches to Brain Tumor Therapy

Adjuvant Therapy. Four protocols are presently open for newly diagnosed GBM. These include the following: 1) neoadjuvant oxaliplatin followed by the EORTC/NCIC regimen; 2) talampanel given with the EORTC/NCIC regi-

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>No. of Patients</th>
<th>Regimen</th>
<th>Outcome (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dresemann, 2003</td>
<td>30</td>
<td>hydroxyurea + Gleevec</td>
<td>17</td>
</tr>
<tr>
<td>Reardon, et al., 2005</td>
<td>33</td>
<td>hydroxyurea + Gleevec</td>
<td>9</td>
</tr>
<tr>
<td>Stark-Vance, 2005</td>
<td>21 (11 w/ GBM)</td>
<td>Avastin + CPT-11</td>
<td>43</td>
</tr>
</tbody>
</table>

* mOS = median overall survival; NS = not stated; PFS = progression-free survival.
men; 3) EMD 121974 (cilengitide) given with the EORTC/NCIC regimen; and 4) poly-ICLC given after concurrent TMZ and radiation therapy and with TMZ given after radiation therapy.

In neoadjuvant oxaliplatin therapy, oxaliplatin is administered intravenously prior to concurrent radiotherapy and TMZ in an attempt to define activity for this platinoid salt. Talampanel, an oral agent studied initially at the National Cancer Institute, is a glutaminergic antagonist originally designed as an anticonvulsant agent that was found to inhibit glioma cell motility. The agent EMD is an intravenous antagonist originally designed as an anticonvulsant agent that was found to inhibit glioma cell motility. The agent EMD is an intravenous integrin inhibitor (α,β) with antiangiogenic activity. Last, intramuscular poly-ICLC has four purported mechanisms of action, including interferon induction, immune modulation, antiproliferative antipapoptotic activity, and regulation of a variety of genes.

Salvage Therapy. Four trials are presently open for recurrent GBM. These include the following: 1) SDX-102; 2) Bay 43-9006 (sorafenib); 3) interstitial 111In-chTNT-1/B (Cotara; Peregrine Pharmaceuticals, Inc., Tustin, CA); and 4) high-dose methotrexate using an intratumoral microdialysis catheter. The SDX molecule is a novel purine antagonist that is also administered intravenously and requires tumor tissue screening for the presence or absence of the repair enzyme methylthioadenosine phosphorylase. If this enzyme is absent, patients are considered candidates for SDX-102 therapy. Sorafenib, recently approved for renal cell carcinoma, is an oral anti-Raf inhibitor with antiangiogenic activity. Cotara, an anthisthione monoclonal antibody directed at necrotic tumor and conjugated to iodine-131, is administered by CED in a dose-finding study. Last, high-dose methotrexate is studied pharmacologically by using intratumoral microdialysis catheters, and intratumoral methotrexate levels are compared with those in serum.

North American Brain Tumor Consortia

Adjuvant Therapy. One trial is open for newly diagnosed GBM, as follows: R115777 (tipifarnib) and radiotherapy.

Tipifarnib is a farnesyl inhibitor that blocks the Ras signaling pathway.

Salvage Therapy. Three trials are open for recurrent GBM; these include the following: 1) EMD 121 974 (cilengitide); 2) depsipeptide; 3) OSI-774 (erlotinib; Tarceva) and CCI-779 (temsirilomus); and 4) SAHA and TMZ.

Cilengitide, as discussed earlier, is an integrin inhibitor with antiangiogenic activity. Depsipeptide, like SAHA, is an HDAC inhibitor. Erlotinib combined with temsirolimus is a rational combination of small-molecule inhibitors designed to block both EGFR and downstream elements (such as mammalian target of rapamycin) of the PI3K/Akt survival pathway. A hydroxamic acid derivative, SAHA, is one of several HDAC inhibitors. The HDAC molecule functions as a transcriptional repressor by compaction of chromatin, and HDAC inhibition causes cell cycle arrest, apoptosis, and differentiation.

North Central Cancer Treatment Group

Adjuvant Therapy. Two trials are open for newly diagnosed GBM. These include the following: 1) radiotherapy and the combination of CPT-11 and BCNU; and 2) OSI-774 (erlotinib; Tarceva) in conjunction with the EORTC/NCIC regimen. The agent CPT-11 is a topoisomerase 1 inhibitor with activity against recurrent GBM (Table 3), and may be synergistic when administered with BCNU. Tarceva, as mentioned earlier, is a tyrosine kinase inhibitor that blocks EGFR activation.

Salvage Therapy. A single salvage trial is open, and it involves SAHA, a hydroxamic acid derivative and one of several HDAC inhibitors, as discussed earlier.

Radiation Treatment Oncology Group

Adjuvant Therapy. A single trial is open, in which the EORTC/NCIC regimen is being compared with a dose-dense TMZ regimen.

The value of increasing the TMZ dose in the treatment of
GBM is still controversial. This large randomized trial will not only enable validation of the EORTC/NCIC results (standard-dose TMZ), but in addition, the investigators will attempt to prove the principle that increasing TMZ (that is, by using the 21 days on and 7 days off schedule, with TMZ given at 100 mg/m2/day) positively affects the outcome in newly treated patients with GBM. Furthermore, the protocol allows patients older than 69 years of age to be treated, and, in patients with responsive tumors, treatment can extend beyond the 6-month postradiation TMZ regimen.

Salvage Therapy. No trial is available at this time.

Conclusions

The treatment of adults with GBM continues to evolve. The EORTC/NCIC regimen now serves as the standard initial therapy with which other trials will be compared. The next development in the adjuvant treatment of GBM is likely to be the addition of a targeted therapy to TMZ administration, as is reflected in the clinical trials conducted by the brain tumor consortia. These targeted therapies may be CED-based or small-molecule inhibitors, depending on the results of ongoing trials. The EORTC/NCIC investigators, in conjunction with the RTOG, are planning a follow-up randomized Phase III trial for adjuvant treatment of GBM, and will compare extended TMZ treatment (from 6 to 12 months after radiotherapy) with a dose-dense TMZ schedule. Additionally, the pharmaceutical industry is planning new randomized trials for recurrent GBM, in which a variety of new compounds such as enzastaurin (Eli Lilly Pharmaceuticals, Indianapolis, IN), a novel protein kinase C inhibitor, will be compared with the best standard chemotherapy.

New targeted therapies will be increasingly used for recurrent GBM in Phase I and II trials, and are likely to provide new directions for adjuvant treatment. A novel concept, that of gliomas as neural stem cell–derived tumors, may stimulate the design of new therapies directed at these pluripotent precursor cells with their purportedly distinct cell surface markers (for example, CD133). Constitutive activation of EGFRviii (no ectodomain) mutations in 40% of GBMs overactivation of PI3K-Akt survival pathway upregulation of antiapoptotic factors, promotion of cell survival $PTEN$ mutations (negative regulator PI3K) in 45% of GBMs mutations in tumor suppressor gene $p53$ cell cycle control, DNA repair, induction of apoptosis $p53$ mutated in 30% of GBMs overexpression of PDGFR activation of angiogenesis, PI3K, Ras-MAPK mutations in 25% of GBMs $MAPK$ = mitogen-activated protein kinase; PDGFR = platelet-derived growth factor receptor.

Appendix 2

Targeted therapy for GBM

EGFR tyrosine kinase inhibitors
gefitinib (Iressa)
erlotinib (Tarceva)
imatinib (Gleevec)
PI3K inhibitors
wortmannin
LY294002
mammalian target of rapamycin inhibitors
rapamycin
CCI-779
RAD001
farnesyl transferase inhibitors
tipifarnib (R115777)
lonafarnib (SCH66336)
antiangiogenic agents
imids
CC-5103
PTK787
antiinvasive agents
cilengitide
marimastat
cell growth & migration inhibitor
cis-retinoic acid (Accutane)

Appendix 3

Intratumoral drug delivery
direct injection (for example, DTI-101)
intracavitary administration (for example, 131I-TM-601)
chronic low-flow microinfusion
controlled-release polymer implants (for example, Gliadel wafers)
CED

Appendix 4

Targeted toxins for CED of drugs*
TP-38
TGF-α (EGFR ligand)
linked to pseudomonas exotoxin (termed PE-38)

Appendix 1

Molecular biology of GBMs

overexpression of EGFR
Treatment options for glioblastoma

TF-CRM107 (TransMID: Xenova Biomedix Pharmaceuticals) transferrin linked to diphtheria toxin
IL13-PE38QQR (NeoPharm, Inc.) IL-13 linked to pseudomonas exotoxin IL4-PE38KDEL IL-4 linked to pseudomonas exotoxin
111I-l-chTNT-1/B (Cotara; Peregrine Pharmaceuticals, Inc.) monoclonal antibody to histone protein linked to iodine-131
*TGF-α transforming growth factor-α

References

mozoalotidone plus the matrix metalloproteinase inhibitor, mari-
matast, in recurrent progressive glioblastoma multiforme. J Clin
Oncol 20:1383–1388, 2002
and benefit from temozolomide in glioblastoma. N Engl J Med
352:997–1003, 2005
O6-methylguanine-DNA methyltransferase levels with survival of
malignant astrocytoma patients treated with cis-chlorohydrin-
iminosrotea: a Southwest Oncology Group study. J Clin Oncol
16:3310–3315, 1998
temozolomide and 13-cis-retinoic acid for the treatment of recur-
rent and progressive malignant glioma: a North American Brain
for recurrent glioblastoma multiforme. Neurology 56:118–120,
2001
43. Keles GE, Anderson B, Berger MS: The effect of extent of re-
section on time to tumor progression and survival in patients
with glioblastoma multiforme of the cerebral hemisphere. Surg
Neurol 52:371–379, 1999
44. Khunta D, Mehta M: Motexafin gadolinium: a clinical review
of a novel radioenhancer for brain tumors. Expert Rev Anti-
cancer Ther 4:981–989, 2004
45. Kioi M, Kawakami K, Puri RK: Analysis of antitumor activity of
with newly diagnosed glioblastoma multiforme treated with
RSR13 and radiotherapy: results of a phase II New Approaches
to Brain Tumor Therapy CNS Consortium safety and efficacy
imaging study of extent of surgical resection and prognosis of
48. Kuan CT, Wikstrand CJ, Bigner DD: EGF mutant receptor vIII
in glioma: data from the Glioma Outcomes Project. J Clin Oncol
23:3708–3715, 2005
apy in patients with recurrent brain tumors treated with temoz-
50. Kreth FW, Steinmetz M. C. Chamberlain

alone or with temozolomide in patients with malignant glioma.
51. Prados MD, Yung WK, Jaekle KA, et al: Phase I trial of irin-
otecan (CPT-11) in patients with recurrent malignant glioma: a
North American Brain Tumor Consortium study. Neuro-oncol
6:44–54, 2004
52. Raymond E, Fabbro M, Boige V, et al: Multicentre phase II study
and pharmacokinetic analysis of irinotecan in chemotherapy-
53. Reardon DA, Egorin MJ, Quinn JA, et al: Phase II study of ima-
tinib mesylate plus hydroxyurea in adults with recurrent glio-
55. Ries LAG, Eisner MP, Kosary CL, et al: SEER Cancer Statis-
Institute, 2005 (http://seer.cancer.gov/csr/1975_2002/) [Ac-
cessed 1 March 2006]
of radiation therapy in older patients with glioblastoma multi-
forme: a prospective randomized clinical trial. J Clin Oncol 22:
1583–1588, 2004
57. Sanai N, Alvarez-Buylla A, Berger MS: Neural stem cells and
treatment of recurrent glioblastoma multiforme. Neuro-oncol
5:253–258, 2004
Cooperative Group NIH Trial 87–01: a randomized comparison
of surgery, external radiotherapy, and carmustine versus sur-
gery, interstitial radiotherapy boost, external radiotherapy, and
60. Shinoda J, Sakai N, Murase S, et al: Selection of eligible pa-
tients with supratentorial glioblastoma multiforme for gross to-
extent of surgical resection on survival of patients with glio-
blastoma multiforme: results of three consecutive Radiation
Therapy System) for treatment of recurrent malignant glioma: multi-
concomitant temozolomide for glioblastoma multiforme: results
of a phase III randomised controlled trial (EORTC 22011-02-
results in patients with newly diagnosed glioblastoma multi-
forme treated with concomitant radiation plus temozolomide fol-
lowed by adjuvant temozolomide. J Clin Oncol 20:1375–1382,
2002
concomitant and adjuvant temozolomide for glioblastoma. N
of life in patients with glioblastoma: a randomised controlled trial.
Lancet Oncol 6:937–944, 2005
catheter and liquid 125I radiation source (GliaSite Radiation The-
rapy System) for treatment of recurrent malignant glioma: multi-
O6-methylguanine-DNA alkyltransferase activity with protract-

8

Neurosurg. Focus / Volume 20 / April, 2006

M. C. Chamberlain
Treatment options for glioblastoma

Manuscript received January 23, 2006. Accepted in final form March 3, 2006.
Address reprint requests to: Marc C. Chamberlain, M.D., Department of Interdisciplinary Oncology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Avenue, Tampa, Florida 33612-0804. email: ChambeMC@moffitt.usf.edu.